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The axial sti!ness of a bolt plays a critical role in the prediction of the self-loosening
process of threaded connections subject to oscillatory excitation. Since self-loosening is one
of the most frequent failure modes for threaded connections, it is important to understand
the mechanisms of this behavior. In this paper a three-dimensional "nite element model of
a single bolt threaded into a plate is used to determine values for the axial sti!ness of the
bolt. The model is loaded by pulling the nodes around the outside of the bolt head in the
axial direction while holding the bottom of the plate "xed. Several analyses are performed to
investigate the axial sti!ness of the bolt. Quasistatic analysis predicts a linear relationship
between the reaction force and the axial stretch of the bolt, indicating that the axial sti!ness
is constant. Dynamic analyses yield similar results if the prescribed accelerations are limited,
though the predicted sti!ness values are lower than those from the quasistatic analyses.
Di!erent dynamic loading patterns also yield slightly di!erent sti!ness values. Investigations
from this research can be used to better predict the self-loosening process.
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1. INTRODUCTION

Self-loosening, which is the reduction of clamping force due to any e!ect other than a direct
torque on a bolt head or nut, is one of the most prominent causes of failure of threaded
connections in mechanical assemblies. Even though considerable research has explored the
self-loosening behavior of bolts, the exact mechanisms of this behavior had remained
obscure until recent papers by Zadoks and Yu [1] and Hess [2] accurately predicted the
self-loosening behavior of a single bolt subject to harmonic base excitations in the
transverse and axial directions, respectively (see Figure 1).

Zadoks and Yu [1] analyzed the conditions needed for transversely loaded connections
to loosen and stated that the o!-torque in the bolt must overcome all of the frictional
resistances for the bolt to loosen. With their experiments on a connection with a single bolt,
as shown in Figure 1, they proved that impact is a su$cient condition for the bolt to loosen
dynamically. They also modelled the threaded connection of their experiments as
a two-degree-of-freedom mass}spring model, including the e!ects of bending and Hertz
contact. With this analytical model these authors were able to accurately predict the
0022-460X/01/370349#25 $35.00/0 ( 2001 Academic Press



Figure 1. Schematic of the single bolted joint (after Zadoks and Yu [1]).
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self-loosening process. However, some of the parameter values in the analytical model had
to be adjusted to achieve these results. Axial sti!ness, which determines the change in the
bolt preload based on the rotation of the bolt, was one of the critical parameters that had to
be adjusted in the prediction of the self-loosening process.

The adjustment of some of the parameter values in reference [1] serves as the motivation
behind the current investigation of the axial sti!ness of bolts. A powerful and sophisticated
tool for understanding the behavior of mechanical systems is the "nite element method
(FEM). To determine the value of the axial sti!ness of a bolt and, thereby, to better
understand the self-loosening process, a three-dimensional "nite element model of
a threaded connection [3] is analyzed using the PRONTO3D and JAS3D FEM computer
programs. PRONTO3D [4] is a "nite element program for the analysis of the
three-dimensional response of systems subjected to transient dynamic loading conditions.
JAS3D [5] is a multi-strategy iterative code for quasistatic solid mechanics analysis. In
a quasistatic analysis the inertial forces are assumed to be negligible when compared to the
external (applied) forces and the internal (strain) forces, leading to a Newton's First Law of
Motion formulation:

+
N
F"

N
0. (1)

However, motion is still allowed, meaning that velocity and forces based on velocity are still
included in the analysis.

2. FINITE ELEMENT MODEL DESCRIPTION

Zadoks and Kokatam [3] described the development of two di!erent three-dimensional
"nite element models of a threaded connection like the one shown in Figure 1. These models
were essentially identical in geometry, but di!ered in the re"nement of certain portions of
the mesh. The complex geometries of both the external and internal threads were
realistically modelled, with di!erent levels of "delity in the two meshes. The more accurate
model was referred to as the re"ned mesh, while the model with signi"cant reductions in
node and element counts was referred to as the coarse mesh. The coarse mesh has been used
to perform all of the dynamic analyses and one of the two quasistatic analyses described in
this paper. The goal of these analyses is to determine a value for the axial sti!ness of the bolt,
where axial sti!ness is de"ned as the slope of the axial load versus axial stretch line. The
selection of the appropriate axial stretch is discussed below.



TABLE 1

Dimensions of the ,nite element model (after Zadoks and Kokatam [3])

Description (mm) (in)

Diameter of the bolt 6)3500 0)25
Width across #ats of the bolt head 10)9728 0)432

Thickness of the bolt head 4)2333 0)16667
Length of the unthreaded shank 14)8167 0)58333
Length of the threaded shank 16)9333 0)66667

Outer radius of the plate 28)3972 1)118
Thickness of the plate 12)7000 0)50

TABLE 2

Material properties

Description Value

Mass density (kg/m3) 7844)
Young's modulus (GPa) 206)8

The Poisson ratio 0)292
Proof strength (MPa) 586)1

Yield strength (0)2% o!set) (MPa) 634)3
Ultimate strength (MPa) 827)4
Static friction coe$cient 0)20

Kinematic friction coe$cient 0)20
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The general threaded connection model of Figure 1 consists of a mass clamped to a plate
by a bolt threaded into the plate. However, the clamped mass is not used in the current
analyses to determine the axial sti!ness of the bolt as the mass does not a!ect this value, and
its exclusion reduces the computational costs. Model dimensions are shown in Table 1. The
material properties used in the analyses are listed in Table 2. The friction coe$cient values
shown in Table 2 are for steel to steel dry contact and match the values used in reference [1].

The coarse mesh from reference [3] is shown in Figure 2, and a cross-sectional view of
this mesh after zooming at the threaded region is presented in Figure 3. This mesh includes
38 500 nodes and 30 966 solid hexahedral elements. All of the nodes on the outside surface
of the bolt head, along its thickness, are grouped as a node set (node set 1) and all of the
nodes on the bottom surface of the plate are grouped as another node set (node set 2) for the
application of boundary conditions during the analyses.

The most critical features of this model are the contacts between the meshes of the threads
and other pieces of the model. Contact between surfaces is modelled in FEM codes with the
help of a contact algorithm. The contact algorithm determines when contact is to be
enforced and applies the resulting forces, as de"ned by physics, between the two contacting
surfaces. Since the physics of contact is not fully understood, FEM contact algorithms
generally allow the user to select from a variety of contact models, such as "xed (no relative
motion between contacting surfaces), sliding without friction, and sliding with friction.
Generally, contact algorithms require the user to de"ne one of the contact surfaces as the
master surface (usually the coarser mesh) and the other as the slave surface (usually the "ner



Figure 2. Finite element mesh of the bolt}plate system (after Zadoks and Kokatam [3]).

Figure 3. Cross-sectional view of the mesh zoomed at the threads (after Zadoks and Kokatam [3]).
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mesh). This master}slave de"nition allows the contact algorithm to determine the
movement of the slave nodes with respect to the master surface. Newer contact algorithms,
like the one used in PRONTO3D [4], allow for the de"nition of a symmetric or balanced
contact, where the two surfaces are treated as equals. While PRONTO3D allows the user to
de"ne a balanced contact pair, JAS3D is limited to master}slave contact relations [5].

Due to the helical nature of the thread forms and the need for smaller elements to get
accurate results in these regions of the model, it would be very di$cult and costly to de"ne
a mesh where nodes could be combined between component parts, such as the external
threads and the rest of the bolt body. Therefore, the threads are meshed separately from the
bolt and plate. However, the threads need to be modelled as being physically integral to
their respective parts. This is accomplished in the FEM input by de"ning "xed contact
between the inside and top surfaces of the external thread mesh and the bolt shank, and
between the outside surface of the internal thread mesh and the plate. Note that the thread
forms are both taken to be the slave surfaces in a master}slave contact relationship. Sliding
friction is de"ned between the external and internal thread meshes. A Coulomb friction
model is used in this contact algorithm, and the friction coe$cient values used in the
analyses described below are listed in Table 2. In the JAS3D quasistatic analyses the
internal thread mesh is selected to be the master surface, while a balanced contact de"nition
is employed at this interface in the PRONTO3D dynamic analyses [4, 5].

As stated previously, results from both quasistatic and dynamic FEM analyses are
presented below. There are two major reasons for the inclusion of both types of analysis in
this study. First, this work is meant to serve as a preliminary step in the development of
a fully dynamic FEM simulation of the self-loosening process studied in reference [1].
Therefore, the dynamic results are included to show that PRONTO3D can produce
accurate results for the model developed in reference [3]. Second, the quasistatic results are
included to show that JAS3D can also produce accurate results for this model and to
provide con"rmation of the results predicted by PRONTO3D. It should be noted that the
focus of the work reported here was on the viability of the dynamic analysis, and that the
quasistatic results were generated almost exclusively for con"rmation purposes.

3. DESCRIPTIONS OF THE LOADING CASES

To determine the axial sti!ness of the bolt, the most realistic loading case would be to
hold the plate "xed while applying a known force to the bolt head. This type of loading is
di$cult to apply in a physical system, as it is di$cult to control the force being applied and
to assure that the force is evenly distributed over the bolt head. A second approach, which is
also used in tensile test machines, is to apply a known displacement to the bolt head while
holding the plate "xed. The required force is then measured using a load cell. The di$culty
in applying a realistic force distribution to the FEM model leads to the use of this latter
loading condition.

To apply this loading condition to the FEM model, node set 2 is held "xed by applying
`no displacementa boundary conditions in all three Cartesian directions, while node set 1 is
subjected to a kinematic boundary condition in the axial (z) direction. For the quasistatic
analyses a linearly varying displacement, starting at zero, with a slope equal to 36)83mm/s
is prescribed (see Figure 4). This slope was selected so that the ending displacement of the
quasistatic analysis would nearly match the ending displacement from the dynamic Case 1
(b) analysis (8)103lm versus 8)128lm).

For the dynamic analyses the axial velocity is prescribed, leading to the displacement
functions shown in Figure 4 (note that Case 1(a) is not shown for scaling purposes).



Figure 4. Time histories of the displacements applied to the bolt head: **, dynamic Case 1(b); } }} } },
dynamic Case 2; * )* )*, quasistatic case.
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A velocity boundary condition is applied because PRONTO3D does not allow for the
direct application of a prescribed displacement [4]. Three di!erent velocity functions are
prescribed for the dynamic analyses. For Cases 1(a) and 1(b), the velocity starts at zero,
increases cycloidally to a constant velocity value at 40ls (which is 406)4mm/s for Case 1(a)
and 50)8mm/s for Case 1(b)), decreases cycloidally from the constant value back to zero in
the time range from 160 to 200ls, and remains at zero until the end of the simulation at
220ls. The cycloidal increasing and decreasing functions are respectively:

vN
increase

(t)"
tK
Dt

!

1

2n
sinA

2ntK
Dt B, vN

decrease
(t)"1!

tK
Dt

#

1

2n
sinA

2ntK
Dt B , (2, 3)

where Dt is the time span of the cycloidal curve (40ls in these examples) and tK is an adjusted
time that is equal to zero at the beginning of the cycloidal curve and equal to Dt at the end of
the curve. The velocity v(t) is found by multiplying vN (t) by a scale factor, which is 406)4mm/s
for Case 1(a) and 50)8mm/s for Case 1(b).

For the third dynamic analysis (Case 2) the velocity function is identical to the function
for Case 1(b) up to 60 ls. At 60ls the Case 2 velocity function decreases cycloidally from the
constant value back to zero at 100ls, stays constant at zero until 110 ls, decreases
cycloidally to the negative of the constant velocity value (!50)8mm/s) at 150 ls, remains
constant at this value until 170ls, increase cycloidally back to zero at 210ls, and remains
constant at zero until the end of the simulation at 220 ls. The resulting displacement
function for this loading case is shown in Figure 4.

The velocity scale factor for Case 1(a) was selected because it led to an axial force that was
approximately equal to the design preload for this bolt. The design preload, which was
selected to be 90 per cent of the proof load for the bolt, was calculated to be 10)82kN for
a standard, grade 5, 1/4 in diameter bolt with coarse threads [6]. The "nal axial force from
the Case 1(a) simulation was found to be 10)88kN. The velocity scale for Case 1(b) was
selected to match the scale used in Case 2. The velocity scale for Case 2 was selected so that
the maximum axial force would be approximately 534N, which is twice the preload used in
reference [1]. The maximum axial force from the Case 2 simulation was found to be 510)5N.
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Before presenting the results of the analyses, the loading patterns described above and
shown in Figure 4 should be discussed. First, it should be noted that the time span for the
loading is quite short (220ls). This time was a compromise between a shorter time that was
desired to reduce the computational time required by the FEM program, which is directly
proportional to the number of time steps in the analysis, and a longer time that was desired
to more accurately re#ect a realistic load case and to reduce the dynamic e!ects in the FEM
results. Essentially, the time selected was the smallest value that would yield reasonably
clean dynamic simulation results with the Case 2 loading pattern.

For the dynamic simulations the time step is determined so that a stress wave takes more
than one time step to cross any single element in the mesh. This is required for stability of
the central di!erence integration algorithm implemented in PRONTO3D [4]. Since the
entire mesh is composed of a single elastic material type (i.e., low carbon steel as indicated
by the property values in Table 2), the stress wave speed is a constant given by

c"S
E (1!k)

o (1#k) (1!2k)
"5894m/s, (4)

where E is Young's modulus, k is the Poisson ratio, and o is the mass density. The maximum
stable time step is then found by dividing the smallest distance across an element by the
value from equation (4). This time step value was found to be 0)00626ls. Therefore,
assuming that the time step remains constant there would be over 35 000 steps in a 220 ls
simulation.

The dynamic e!ects that needed to be avoided were associated with the time for the
re#ection of a stress wave to return to its point of origin. Since the excitation was applied
parallel to the bolt's axis, the wave re#ection time was determined by the axial length of the
bolt:

t"
2¸

c
"12)21ls, (5)

where L is the total length of the bolt including the bolt head thickness (35)983mm from
Table 1) and c is the wave speed from equation (4). The time span Dt of the cycloidal
portions of the prescribed motion curves was then selected to be 40 ls so that it was more
than 3 times the time value calculated in equation (5). Additionally, the transition portions
of the velocity curve were selected to be cycloidal to assure that the acceleration would be
continuous and to minimize the magnitude of the acceleration. This curve selection also
assured continuous jerk ("rst derivative of acceleration).

While the selection of the shape of the prescribed velocity reduced the undesirable
dynamic e!ects, another feature of the mesh and the contact algorithm in PRONTO3D [4]
tended to reintroduce these e!ects. Due to the precision of the pre-processing programs
a slight overlap existed at some locations of the interface between the thread forms. This led
to an initial pushback of the penetrating nodes, which manifested as an initial spike in the
kinetic energy (see Figure 5). This acted like an impulse load on the system, introducing
high-frequency stress waves that produced undesirable results during the rest of the
dynamic simulations.

To remove these dynamic e!ects two preliminary stages were simulated before the
prescribed velocities described above were applied. During the "rst stage, which lasted
60ls, node set 1 was held "xed in the axial direction by setting the prescribed velocity to
zero and a mass proportional viscous damping was introduced. A proportionality constant
of 1)14e6 s~1 was selected to provide the maximum reduction in net kinetic energy for the
entire system over the selected simulation time. It can be seen in Figure 5 that the kinetic



Figure 5. Kinetic energy for the preliminary stages of the dynamic simulations.

Figure 6. Velocity of node 6 during damped preliminary stage.
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energy was reduced by eight orders of magnitude during this simulation stage. During the
second stage, which ran from 60 to100ls in Figure 5, node set 1 continued to be held "xed
in the axial direction and the mass proportional viscous damping constant was set to zero.
Over this time the kinetic energy increased by more than two orders of magnitude from the
minimum but was still more than "ve orders of magnitude smaller than the original kinetic
energy spike.

The velocity of node 6 is plotted in Figure 6 for the "rst 20ls of the damped preliminary
stage to further illustrate the e!ects of the initial impulse load due to the pushback and the
mitigation of these e!ects by the mass proportional damping. Node 6 is located on the
centerline of the bolt shank on the transverse line that is just above the engagement between
the external and internal thread forms (see Figure 3). This node did not begin to move until
the seventh time step of the simulation (approximately 0)040ls) and it then exhibited



Figure 7. Net reaction forces on node set 1 during the preliminary stages:**, transverse x; } } } }} , transverse y.
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a positive velocity (i.e., in the opposite direction of the pushback of the external threads).
This produced an oscillation that was essentially damped out by 7)50ls (about 1300 time
steps, where the kinetic energy of the system had been reduced by over four orders of
magnitude). While the velocity of node 6 did not noticeably oscillate after 7)50 ls, it was also
not equal to zero. Indeed, it was approximately equal to !0)055mm/s, By the end of the
damped preliminary state (60ls) the axial velocity was reduced to #7)007nm/s and the
axial displacement was !2)257nm.

To assure that the mass proportional damping was not introducing a "ctitious solution,
a second preliminary stage without damping was run. A "ctitious solution was suspected
because the transverse components of force on node set 1 were not equal to zero (see
Figure 7). The removal of the damping allowed these force components to return to zero
immediately, while also allowing the oscillations to reappear. However, the amplitude of the
velocity of node 6 was still four orders of magnitude smaller than the maximum amplitude
due to the initial shock. During this undamped stage the axial displacement of node 6 was
reduced to !2)253nm.

At the end of the preliminary stages a small axial force existed in the bolt (see Table 4). It
should be noted that the quasistatic simulation was not subject to the impulse-induced
oscillations exhibited in the dynamic simulations, and so no preliminary stages were
needed.

To qualitatively assess the e!ect of the preliminary unloaded stages on the results of the
subsequent loaded phase two versions of the Case 2 simulation, with and without the
preliminary stages, were run. Figure 8 shows the kinetic energy values from these two
simulations. As can be seen from this plot, the kinetic energy appears to have smaller
#uctuations in the constant velocity regions (where the kinetic energy is maximized) of the
simulation run with the preliminary stages used to damp out initial #uctuations due to the
pushback. Additionally, the initial kinetic energy spike is seen to be only one order of
magnitude smaller than the maximum kinetic energy due to loading. This reduction of the
#uctuations in the constant velocity regions of the loading is important, as data from these
regions are used to determine the axial sti!ness values, as discussed in the next section of
this paper.



Figure 8. Kinetic energy values for Case 2 simulations: **, with preliminary stages; . . . . . . . . . , without
preliminary stages.

TABLE 3

Axial displacement values

Final displacement
Initial

Node
number

displacement
(nm)

Case 1(a)
(lm)

Case 1(b)
(lm)

Case 2
(nm)

Quasistatic
(lm)

1 0)0000 65)024 8)128 0)0000 8)103
2 !0)402 55)928 6)988 !1)796 6)974
6 !2)253 14)221 1)775 !8)820 1)732
9 !2)896 2)653 0)331 !10)752 0)322
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4. DETERMINATION OF AXIAL STIFFNESS

For the results presented below, the unloaded preliminary stages are not included.
Therefore, the initial time (0ls) corresponds to the end of the second (undamped)
preliminary stage and to the initial time of the displacements shown in Figure 4.

Figure 9 shows the axial displacements of four nodes as determined by the Case 1(a)
simulation. Node 1 is a member of node set 1, so its displacement is equivalent to the
prescribed displacement of Figure 4. Node 2 is the node on the bolt centerline at the top of
the bolt head. Nodes 6 and 9 also lie on the bolt centerline and are located just above the top
of the thread engagement and at the end of the bolt body, respectively, as shown in Figure 3.
It should be noted that there are small initial displacements of nodes 2, 6, and 9 due to the
thread pushback of the preliminary stages. The values of these initial displacements are
listed in Table 3 along with the values of the "nal displacements for the three dynamic and
the quasistatic loading cases. The "nal displacements from Case 1(a) are all 8 times as large
as the "nal displacements from Case 1(b), as would be expected due to the ratio of velocity
scale factors. The "nal displacements from the quasistatic analysis are not exactly



TABLE 4

Axial load values

Final load (kN)
Initial load

(kN) Case 1(a) Case 1(b) Case 2 Quasistatic

0)0005 10)8770 1)3622 0)0021 1)3845

Figure 9. Axial displacements from Case 1(a): **, Node 1; } } } } } , Node 2; } ) }} ) }, Node 6; ) ) ) ), Node 9.
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proportional to the "nal values from dynamic Case 1(b), though the largest variation is less
than 3%, which is well within acceptable bounds. Additionally, the "nal displacements for
Case 2 are not equal to the initial displacements, except for node 1 which is prescribed. This
means that while the loading condition is fully reversed the FEM solution is not.

The axial load is determined di!erently for the dynamic and quasistatic simulations due
to the way in which the two FEM codes (PRONTO3D and JAS3D, respectively) handle
load calculations. For the dynamic simulations, the axial load is found by summing the
z-component of the nodal reaction forces for all of the nodes in the bolt head mesh. For the
quasistatic simulations, the axial load is equal to the net force in the z-direction on the entire
model. Time histories of the axial load for all of the simulations are shown in Figure 10.
Initial and "nal values for the axial load are summarized in Table 4. Again, the "nal load
from Case 1(a) is 8 times as large as the "nal load from Case 1(b), as would be expected. The
"nal load from the quasistatic simulation is larger than the "nal load from Case 1(b), which
is not expected since the "nal displacement from the quasistatic simulation is smaller that
the "nal displacement from Case 1(b) (see Table 3). Also, the "nal load from Case 2 is not
equal to the initial load for the dynamic cases, which is in keeping with the changes in "nal
displacements as noted above.

With the axial displacements and loads discussed above, the axial sti!ness of the bolt can
be calculated. The most straightforward method to calculate the axial sti!ness k

axial
would

be to divide the axial force F
axial

by the axial displacement z:

k
axial

"F
axial

/z. (6)



Figure 10. Time histories of the axial load. Note: The values for Case 1(a) have been reduced by a factor of 10:
**, Case 1(a) (/10); } } } } } } , Case 1(b); } )} } )} } ) } } ) } , Case 2; ) ) ) ), quasistatic.

TABLE 5

Regions used for curve ,ts

Dynamic case Loading (ls) Unloading

1(a) 36}164 N/A
1(b) 36}164 N/A
2 36}64 146}174ls
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This approach would be valid for the quasistatic simulations, where F
axial

and z are both
initially equal to zero and where the axial force is only due to the bolt stretch. In the
dynamic simulations, the value determined from equation (6) would be invalid, since neither
F
axial

nor z is initially equal to zero and since the calculated axial force is a resultant of the
forces due to bolt stretch and to the acceleration of the bolt head. The non-zero initial
values can be addressed by using a least-squares linear curve "t which would lead to an
expression of the form

F
axial

"F
o
#k

axial
z, (7)

where F
o

is an o!set value. The e!ects of acceleration can be minimized by the using the
F
axial

and z data from the regions of the loading curves where the prescribed velocity is
nearly constant. The time values that delimit these regions for the three dynamic load cases
are listed in Table 5. It should be noted again that the preliminary stages that were used to
reduce #uctuations due to the initial pushback at the threads (see Figure 8) are also critical
in minimizing dynamic e!ects during the loading stages.

A "nal question that arises in the calculation of k
axial

in equation (7) is which axial
displacement z should be used. The "rst option would be to use the prescribed displacement
z
1
. The error in this approach is illustrated in Figure 9 and Table 3, where it can be seen that

the displacement z
9

at the opposite (threaded) end of the bolt is not zero. Indeed, the "nal
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values of z
9

for dynamic Cases 1(a) and 1(b) and the quasistatic case are all 4% of the "nal
values of z

1
. To account for this motion of the end of the bolt, the displacement z in equation

(7) should be replaced by a relative displacement value Dz:

F
axial

"F
o
#k

axial
Dz. (8)

Then Dz might be de"ned as the di!erence between z
1

and z
9
. Using this approach, with the

quasistatic data and assuming that F
o
"0, the value of k

axial
is found to be 177)9MN/m,

while the value determined in reference [1] by matching experimental data was
245)2MN/m.

A second option would be to use the displacement z
2

at the center of the bolt head in
place of the prescribed displacement z

1
. This would be justi"ed, as it would represent the

axial stretch of the bolt's centerline. De"ning *z as the di!erence between z
2

and z
9
, the

value of k
axial

is found to be 208)1MN/m, which is closer to the value determined in
reference [1].

A third option reveals itself after closer inspection of the phenomenon being modelled.
The value of k

axial
was used in reference [1] to determine the reduction of axial force due to

a rigid body rotation of the bolt body. In this application it appears that Dz should be
a measure of the stretch of the bolt from the threads to the head. Therefore, Dz is de"ned to
be the axial stretch along the centerline from the top of the bolt head to the point in the bolt
shank just above the engagement between the external and internal threads (node 6 of
Figure 3):

Dz,z
2
!z

6
. (9)

Using this de"nition of Dz and a standard least-squares linear curve "t routine, values for
k
axial

and F
o

for the four loading cases are determined (see Table 6). From Table 6 it can be
seen that the sti!ness values are 5)6}7)7% higher than the value used in reference [1], which
is well within the tolerance used to determine that value. The variation among the four
values from the dynamic simulations is less than 1%, while the quasistatic value is 1)5%
larger than the average of the dynamic values, which is well within the precision of the
codes. The variation among the values of the o!set F

o
is larger, though all of the values are

small in comparison with the average load values for the respective simulations. The
R2 values are all nearly equal to unity, indicating that the linear curves match the data very
well. One interesting thing about the o!set values is that they do not seem to correlate with
the initial load values listed in Table 4.

To check the results obtained from the FEM analyses, the value of the axial sti!ness of
the bolt could be approximated by considering it to be a simple cylinder [6]:

k
axial

"AE/¸, (10)

where A is the cross-sectional area,

A"

n
4
d2, (11)

E is Young's modulus, L is the length of the cylinder, and d is the diameter of the cylinder.
Using the values from Tables 1 and 2, assuming a constant diameter for the entire bolt

and a length equal to the total length of the bolt (from node 2 to 9), leads to
k
axial

"182)0MN/m. This value is considerably smaller than the equivalent value from the
FEM analyses reported above (208)1MN/m). If the value of L in equation (10) is changed
from the total length of the bolt to the axial distance between nodes 2 and 6 (25)8233mm),
then k

axial
"253)6MN/m. This value lies between the value used in reference [1] to match



TABLE 6

¸east-squares curve ,t values

Average
Load case k

axial
(MN/m) F

o
(N) R2 load (N)

1(a) 260)9 4)066 0)999999 5446)
1(b) 261)3 0)072 0)999997 681)5

2 (loading) 259)6 0)140 0)999966 254)9
2 (unloading) 259)1 0)618 0)999913 254)4
Quasistatic 264)1 !0)080 1)000000 692)2
1(a) (revised) 259)1 5)298 1)000000 5707)

Quasistatic (re"ned) 274)4 !0)105 0)999999 743)6
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the experimental data (245)2MN/m) and those determined from the FEM model as listed in
Table 6.

These comparisons show that the hand calculations are sometimes accurate, and
sometimes very inaccurate. Additionally, there exists a question as to how to model the bolt
sti!ness using the method of equation (10). In reference [7] several alternatives were
proposed, and the nominal value reported in reference [1] was based on modelling the bolt
as a pair of cylinders with di!erent diameters acting in series, to account for the reduced
diameter of the threaded section. This model led to a value of 161)8MN/m, which is almost
20% lower than the value predicted by the FEM results using the equivalent relative
deformation. While a reasonable value for the axial sti!ness can be calculated using
equation (10), the reader is reminded that the values used in this calculation were not
obvious until after the FEM results had been examined.

5. ADDITIONAL RESULTS AND DISCUSSION

The axial sti!ness results that were presented in the previous section of this paper
appeared to be quite satisfactory. The axial load versus stretch curves were essentially linear
and nearly reversible, indicating linear elastic behavior as expected. Additional results are
presented in this section to con"rm the appropriateness of the FEM results, and to highlight
di!erences between the PRONTO3D dynamic results and the JAS3D quasistatic results.

Figure 11 shows an elevated view of the deformed mesh at the "nal time for the Case 1(a)
dynamic simulation. The deformations have been multiplied by 500 to improve the
visualization. This deformation pattern seems to be reasonable for the loading case. The
only area of the model where the deformation pattern may not meet expectation is the bolt
head. For comparison, Case 1(a) was revised by setting the radial velocity of node set 1 to
zero. Combined with the loading condition for Case 1(a), this new boundary condition
forced the outside of the bolt head to retain its original shape with the center of the hexagon
"xed at the bolt axis (in the x, y planes). Therefore, the only free displacement of node set 1
would be a rotation about the bolt axis. The magni"ed deformation pattern for this revised
simulation is shown in Figure 12. Comparing Figure 12 to Figure 11, the only obvious
di!erences occur at the bolt head.

Zoomed cross-sectional views of this area for the two simulations are shown in Figure 13.
Here it can be seen that the major a!ect of the revised boundary condition was the
reduction of the deformation of the center of the bolt head, which would lead to a larger



Figure 11. Deformed mesh at the "nal time for Case 1(a) (deformation magni"ed by a factor of 500).
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calculated value for the axial stretch. This increase in stretch was determined to be 5)5%
over the constant velocity region of the loading case used to determine the value of k

axial
.

However, the average axial load over this region increased by 4.8%, so that the calculated
axial sti!ness value decreased by 0)7% (see Table 6). Since it was the latter value which was
of primary interest in this study, this comparison shows that the original boundary
conditions, which left node set 1 free in all but the axial direction, were appropriate despite
the unexpected deformation of the bolt head.

The kinetic energy functions for Case 1(a) and its revision are presented in Figure 14. This
plot shows that restraining the outside of the bolt head to only rotation about the bolt axis
increased the net kinetic energy of the system, and reduced the oscillations of this function
during the constant velocity portion of the loading cycle.

A zoomed cross-sectional view of the "rst thread engagement at the "nal time of the
original Case 1(a) simulation (equivalent to Figure 11) is shown in Figure 15. This "gure
includes an undeformed view and a deformed view magni"ed by 100 of the same zoom
window, and it can be seen that the "xed contact between the bolt body and the external
threads and between the plate and the internal threads was enforced. The contact between
the two thread forms was also enforced, even as the external threads bent and rotated. The
top of the plate was deformed slightly in the same direction as the loading, as would be



Figure 12. Deformed mesh at the "nal time for the revised Case 1(a) (deformation magni"ed by a factor of 500).
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expected, and the deformation patterns in the thread forms were also consistent with
expectations.

A "nal comparison between the original and revised Case 1(a) results is shown in Figures
16 and 17. These plots show the deformations of node lines from four axial locations in the
bolt body. The "rst of these locations was at the top of the bolt head, while the three other
locations were in the threaded portion. The axial distance between the "rst and second
locations was 25)823mm, while the distances between the second and third and third and
fourth locations were both 5)080mm. The larger distance between the "rst and second
locations was the reason why the axial deformations (Dz) increased more dramatically over
this span. In general, the axial deformations were nearly equal across a transverse line,
though there was a slight dip at the center of the node 2 location (corresponding to the
magni"ed deformations seen in Figures 11 and 12) and a slight rise in the centers of the
other three locations.

The in-plane deformations (Dy) show how transverse cross-sections rotated during
loading. The section at the threaded end of the bolt (node 9) rotated about the bolt axis.
Moving up the bolt axis, the cross-sections not only rotated but also translated in the
positive y-direction, with the amount of translation increasing with increasing axial
position. This trend continued to the top of the bolt head in the simulation with the original



Figure 13. Zoomed cross-sectional view of bolt head from: (a) Figure 11; (b) Figure 12. Deformations magni"ed
by a factor of 500.
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boundary conditions (Figure 16). In the simulation with the revised boundary conditions,
the top of the bolt head only rotated, as expected. The additional boundary condition also
reduced the amount of translation experienced by the intermediate cross-sections
(Figure 17). It should be noted that the cross-sections also contracted, as would be expected



Figure 14. Kinetic energy for Case 1(a) (free) and its revision ("xed): **, free; ) ) ) ), "xed.
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from the Poisson ratio e!ects, though this change in the length of the radial lines is
imperceptible in Figures 16 and 17 due to the scaling of the x-axis.

Figure 18 shows zoomed cross-sections of the system for two di!erent dynamic load cases
and the quasistatic load case for times when the calculated axial loads were approximately
1290N. The actual loads for these plots were 1291)6N (Case 1(a)), 1288)5N (Case 1(b)), and
1290)1N-(quasistatic case). The shaded contours correspond to di!erent levels of the von
Mises stress. The plots from Cases 1(a) and 1(b) are nearly identical, while the plot for the
quasistatic case is quite similar. In all cases the stress is nearly zero at the outside of the bolt
head, at the center of the bolt head where it attaches to the shaft, at the threaded end of the
bolt, and in the plate. The latter two locations are as expected, while the former two may not
have been expected but are consistent with the displacement pattern of Figure 13. The stress
is largest at the base of the "rst thread forms that are engaged, as would be expected (note
that scale goes from 0 to 84MPa). The stress then decreases in both directions along the bolt
axis, with the drop o! being faster toward the threaded end than toward the bolt head.
Assuming perfect axial stress in the unthreaded portion of the bolt shaft, the nominal stress
level would be predicted to be 40)679MPa. The loading is not perfectly axial, but the
nominal stress in the center of the unthreaded portion of the shaft is found to be
approximately 41)437MPa for the dynamic cases shown in Figure 18 and 41)162MPa for
the quasistatic case, which are only 1)9% and 1)2% increases, respectively, over the simple
&&force divided by area'' value.

The corresponding plot of von Mises stress distribution from the revised version of the
Case 1(a) loading conditions is included in Figure 19. Here the axial load was calculated to
be 1287)6N These results are very similar to those for the original Case 1(a) loading
conditions included in Figure 18(a), with noticeable di!erences in the patterns being
restricted to the bolt head and the unthreaded portion of the shank. The most signi"cant
changes were in the bolt head, where the stress at the top surface was reduced and where the
area of reduced stress in the center of the head was raised and reshaped. Additionally, the
nominal stress in the unthreaded portion of the shank was reduced to approximately
41)162N.



Figure 15. Zoomed cross-sectional view of threads from Figure 11: (a) undeformed mesh; (b) deformed mesh
magni"ed by a factor of 100.

AXIAL STIFFNESS OF A BOLT 367
A re"ned mesh was also developed in reference [3]. A version of this mesh was also
analyzed under axial loading using JAS3D and the results were compared with the coarse
mesh results presented above. The quasistatic analysis was chosen for this comparison
because it required signi"cantly less computational time than the dynamic analyses. The
coarse mesh quasistatic analysis (JAS3D) required 3)04CPUh on a Sun UltraSPARC-II
workstation (single processor with 296MHz clock speed), while a complete dynamic



Figure 16. Displacement of node lines that lie along the x-axis at di!erent vertical positions for Case 1(a): (a) top
of bolt head (node 2); (b) just above thread engagement (node 6); (c) mid-point between nodes 6 and 9; (d) free end of
bolt (node 9). Note: node numbers correspond to Figure 3. Circles (o) mark the undeformed lines while crosses (x)
mark the deformed lines at the "nal time.
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analysis (PRONTO3D) of the same mesh (i.e., including the two preliminary stages and the
loading stage) took 57)66CPUh on the same computer. The re"ned mesh quasistatic
analysis (JAS3D) required 32)60CPU hours, or a factor of 10)72 times longer than the
coarse mesh. Extrapolating this time increase to the dynamic analysis leads to an estimate of
over 618 CPUh or nearly 26 CPU days.

As reported in reference [3] the major di!erences between the coarse and re"ned meshes
involved the re"nement of the thread meshes, including the rounding of the thread roots
and crests, and the addition of a chamfer where the bolt head connected to the unthreaded
shank. Otherwise, every attempt was made to assure that the two models had the same
dimensions. However, the di!erences in the meshing approaches did lead to slight
di!erences in nodal locations. In particular, the axial distance between nodes 2 (top of bolt
head) and 6 ( just above the "rst thread engagement) increased from 25)400mm in the coarse
mesh to 25)823mm in the re"ned mesh. This 1)67% increase accounted for just under half of
the 3)89% increase in the calculated value of the axial sti!ness, as reported in Table 6. Other
di!erences could be attributed to the fact that the external (bolt) threads were shifted by
approximately half the thread pitch, as can be seen by comparing Figures 3 and 20.
Additionally, there could be as much as 1)00% di!erence between the results due solely to
the selected convergence tolerance for the iterative solution scheme in JAS3D. The von
Mises stress distributions shown in Figures 18(c) and 21 (where the axial load was
calculated to be 1284)7N) are seen to be quite similar. The major di!erences lie in the bolt



Figure 17. Displacement of node lines that lie along the x-axis at di!erent vertical positions for the revised
version of Case 1(a): (a) top of bolt head (node 2); (b) just above thread engagement (node 6); (c) mid-point between
Nodes 6 and 9; (d) free end of bolt (node 9). Note: node numbers correspond to Figure 3. Circles (o) mark the
undeformed lines while crosses (x) mark the deformed lines at the "nal time.

AXIAL STIFFNESS OF A BOLT 369
head area, where the re"ned mesh had a lower maximum value along the top edge,
increased stress at the outer corners, an increased area of reduced stress in the middle that
was shifted up, and signi"cant stress intensi"cation at the chamfers. The area of increased
stress that appeared in the coarse mesh results, about one-third of the way down in the
unthreaded portion of the shank, is missing from the re"ned mesh results. Stress
intensi"cation at the roots of the external threads was not as severe in the re"ned mesh
results, though this may be an artifact of the reduced size of the elements in this region.
Additionally, the nominal stress in the unthreaded portion of the shank was reduced to
approximately 40)610MPa.

6. COMPUTATIONAL CONSIDERATIONS

The FEM analyses presented in this paper are computationally intensive and, until very
recently, would have been restricted to the very fastest super computers. The results
presented in this paper were all generated on a mid-range UNIX workstation, using a single
processor (Sun UltraSPARC-II with a 296 MHz clock speed). This machine was upgraded
from its standard con"guration by adding RAM (to 640Mbytes) and hard disk space (to
12Gbytes). Even with these upgrades, only two simulations could be run simultaneously,
results needed to be deleted or reduced in size on a regular basis to assure adequate hard
disk space for additional analyses, and complete simulations might take days to be
processed.



Figure 18. Von Mises stress when axial load is approximately 1290N (cross-sectional view): (a) Case 1(a);
(b) Case 1(b); and (c) quasistatic case.

Figure 19. Von Mises stress when axial load is approximately 1290N for revised Case 1(a) loading
(cross-sectional view).
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Figure 20. Cross-sectional view of the mesh zoomed at the threads for the re"ned mesh.

Figure 21. Von Mises stress when axial load is approximately 1290N for re"ned mesh and quasistatic loading
(cross-sectional view).
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As reported above, a complete dynamic analysis (PRONTO3D) of the coarse mesh (i.e.,
including the two preliminary stages and the loading stage) required 57)66CPUh (2)4CPU
days), 11Mbytes of RAM, and 1)50Gbytes of hard disk space. Since the preliminary stages
did not need to be repeated, it was possible to reduce the time and hard disk space required
for subsequent analyses. A typical dynamic analysis including only the loading stage
required 40)79CPUh (1)7CPU days) and 0)98GBytes of hard disk space. The equivalent
quasistatic analysis (JAS3D) of the same mesh required 3)04CPUh, 13Mbytes of
RAM, and 0)19Gbytes of hard disk space. The re"ned mesh quasistatic analysis
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required 32)60CPUh (1)4CPU days), 39 Mbytes of RAM, and 0)60GBytes of hard disk
space.

7. CONCLUSIONS

Six three-dimensional "nite element analyses of a model of a threaded connection
involving a single bolt threaded into a plate have been presented. Five of these analyses
employed the same "nite element mesh (coarse mesh) while the sixth analysis employed
a re"ned version of this mesh. Four of the coarse mesh analyses utilized a dynamic solution
program called PRONTO3D, while the "fth coarse mesh analysis and the re"ned mesh
analysis utilized a quasistatic solution program called JAS3D. In all of these analyses the
bottom of the plate was held "xed in all directions while kinematic constraints were used to
pull the bolt in its axial direction.

The results from these FEM outputs were then analyzed to determine values for the axial
sti!ness of the bolt. These values were based on the axial stretch measured between two
nodes, one at the top of the bolt head and a second in the bolt body just above the "rst
thread engagement, which were located on the bolt axis, and an equivalent axial force. The
results from all six analyses were in good agreement, and these results agreed with the value
presented by Zadoks and Yu in their prediction of the self-loosening of a threaded
connection [1]. The FEM results were compared with hand calculations, and it was found
that good agreement could be achieved using dimensions that were selected based on the
FEM results. Additional FEM results were presented to further con"rm the
appropriateness of the solutions.

There are two signi"cant conclusions that can be drawn from the work presented here.
First, it has been shown that the complex three-dimensional behavior of a threaded
connection, including contact between helical threads, can be accurately modelled using the
PRONTO3D dynamic analysis "nite element method computer software [4]. This lays the
groundwork for analyses with more complex loading conditions, such as the tightening of
a bolt to create a preload and the transverse vibration of the entire bolted connection with
bolt preload. Second, the results of these analyses con"rm the value of axial sti!ness that
had been derived empirically in reference [1], and provide clear insight into why this value
is correct.
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